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Poisson Distribution

Poisson Distribution: A random variable X is said
to have a Poisson distribution with parameter , if
its density function is given by:
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To verify P(S) = 1 for Poisson distribution formula
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Since the infinite series in the expression on the right 
is Maclaurin’s series for e, it follows that
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Mean and Variance
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Moment Generating function
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The number of traffic accidents per week 
in a small city has a Poisson distribution 
with mean equal to 1.3. What is the 
probability of at least two accidents in the 
next week?

Example-1

J.K. Sahoo
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Poisson Processes 

Suppose we are concerned with discrete events taking
place over continuous intervals (not in the usual
mathematical sense) of time, length or space; such as
the arrival of telephone calls at a switchboard
number of red blood cells in a drop of blood (here the

continuous interval involved is a drop of blood).
number accidents in a city per year.

J.K. Sahoo
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Steps for solving Poisson process problems

Determine the average number of occurrences of the
event per unit (i.e. λ).

Determine the length or size of the interval (i.e. s).
The random variable X, the number of occurrences of

the event in the interval of size s follows a Poisson
distribution with parameter k= λ s.

i.e.,

J.K. Sahoo
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The number of traffic accidents per week 
in a small city has a Poisson distribution 
with mean equal to 3. What is the 
probability of at least one accidents in the 
next 2 weeks?

Ans:0.9975

Example-2
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Suppose flaws (cracks, chips,
specks, etc.) occur on the surface of
glass with density of 3 per square
meter. What is the probability of there
being exactly 4 flaws on a sheet of
glass of area 0.5 square meter?

Ans: 047

Example-3
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Example-4

The arrival of trucks at a receiving dock is a Poisson
process with a mean arrival rate of 2 per hour.

(a) Find the probability that exactly 5 trucks arrive
in a two hour period.

(b) Find the probability that 8 or more truck arrive
in a two hour period.

(c) Find the probability that exactly two trucks
arrive in a one hour period and exactly 3 trucks
arrive in the next one hour period.

Solution: Given λ = 2 trucks/hr,
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(a) s = 2 k = 4
P(X = 5) = 0.156

(b) P(X  8) = 1 - F(7;4) = 1 – 0.949 = 0.051
(c) For first 1 hour period the probability is

f(2;2) = 22.e-2/2! = 0.2707
and second 1 hour period the probability is
f(3;2) = 23.e-2/3! = 0.1804

These two intervals do not overlap so the counts are
independent, hence required probability
= f(2;2). f(3;2) = (0.2707)(0.1804) = 0.0488

J.K. Sahoo
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Poisson Approximation to the Binomial Distribution 

To Show that when n  and p  0, while np = 
remain constant, b(x;n,p)  f(x; ).
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Proof: First we substitute /n for p into the formula 
for the binomial distribution, we get
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Note:
An acceptable rule of thumb is to use Poisson
approximation to the binomial distribution
 if n  20 and p  0.05;
 if n  100, the approximation is generally

excellent so long as np  10.

J.K. Sahoo
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Poisson Approximation to the Binomial Distribution 

Comparison of Poisson and binomial probabilities
Example: It is known that 5% of the books bound at a

certain bindery have defective binding. Find the
probability that 2 of 100 books bound by this
bindery will have defective binding using:

(a) the formula for the binomial distribution;
(b) the Poisson approximation to the binomial

distribution.

J.K. Sahoo
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Solution: Given x = 2, n = 100 and p = 0.05, 
 = n.p = 5
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The difference between the two values we obtained 
is only 0.003. When we use Table 2,  
f(2; 5) = F(2; 5) - F(1; 5) =0.125 – 0.040 = 0.085.
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